• Mechanics
    • —
      • M1. Vectors vs. Vector Quantities; Scalars vs. Scalar Quantities
      • M2. Significance of Newton’s First Law
      • M3. Newton’s Third Law: Its Formulation, Its Significance
      • M4. Momentum Conservation; Its Central Role
      • M5. Space Homogeneity And Momentum Conservation
      • M6. Inertial Mass
      • M7. Gravitational Mass
    • —
      • M8. Angular Momentum Characteristics
      • M9. Vanishing Of Total Internal Torque
      • M10. The Isotropy Of Space And Angular-Momentum Conservation
      • M11. Energy, A Central Concept
      • M12. Work And Its Relation To Kinetic And Potential Energy
      • M13. From Kepler’s Laws To Universal Gravitation
      • M14. Error And Uncertainty Distinguished
  • Thermodynamics
    • —
      • T1. What Is Thermodynamics
      • T2. Heat Vs. Internal Energy
      • T3. Equipartition And Degrees Of Freedom
      • T4. Frozen Degrees Of Freedom
      • T5. Six Versions Of The Second Law Of Thermodynamics
    • —
      • T6. Available And Unavailable Energy
      • T7. Entropy On Two Levels
      • T8. Subtleties Of Entropy
      • T9. The Arrow Of Time
  • Electricity & Magnetism
    • —
      • E1. Charge
      • E2. Early Links Between Electricity And Magnetism
      • E3. Monopoles, Not!
      • E4. The Q-ℰ-ℬ Triangle
    • —
      • E5. Inductance
      • E6. The Nature Of Light
      • E7. Why Light Travels At Speed C
      • E8. Notes On The History Of Electromagnetism
  • Relativity
    • —
      • R1. Agreement And Disagreement: Relativistic And Classical
      • R2. Transformations: Galilean And Lorentz
      • R3. “Michelson Airspeed Indicator”
      • R4. c = Constant Means Time Must Be Relative
      • R5. More Relativity And More Invariance
      • R6. E = mc2 As Einstein Derived It
    • —
      • R7. Momentum In Relativity, And Another Approach To E = mc2
      • R8. The Fourth Dimension: Spacetime And Momenergy
      • R9. Versions Of The Twin Paradox
      • R10. The Principle Of Equivalence
      • R11. Geometrodynamics
  • Quantum Physics
    • —
      • Q1. Five Key Ideas Of Quantum Mechanics
      • Q2. Granularity
      • Q3. Probability
      • Q4. Annihilation And Creation
      • Q5. Waves And Particles (The de Broglie Equation)
      • Q6. The Uncertainty Principle
      • Q7. Why Is The Hydrogen Atom As Big As It Is?
      • Q8. Localization Of Waves; Relation To Uncertainty Principle
    • —
      • Q9. Planck’s Quantum Not Yet A Photon
      • Q10. Planck’s Constant As The Particle-Wave Link
      • Q11. The Bohr Atom: Obsolete But Important
      • Q12. Bohr’s Key Atomic Postulates
      • Q13. Bohr’s Triumph: Explaining The Rydberg Constant
      • Q14. H-Atom Wave Functions And Classical Correspondence
      • Q15. The Jovian Task: Building The Atoms
      • Q16. Feynman Diagrams
  • Nuclear Physics
    • —
      • N1. Why Are There No Electrons In The Nucleus?
      • N2. The Line Of Nuclear Stability Bends And Ends
      • N3. The “Miracle” Of Nuclear Stability
      • N4. Pauli Letter Proposing What Came To Be Called The Neutrino
    • —
      • N5. Early History Of Radioactivity And Transmutation
      • N6. Bohr-Wheeler Theory Of Fission
      • N7. Sun’s Proton-Proton Cycle
  • General, Historical, Philosophical
    • —
      • G1. Faith In Simplicity As A Driver Of Science
      • G2. Science: Creation Vs. Discovery
      • G3. Is There A Scientific Method?
      • G4. What Is A Theory?
      • G5. The “Great Theories” Of Physics
      • G6. Natural Units, Dimensionless Physics
      • G7. Three Kinds Of Probability
      • G8. The Forces Of Nature
      • G9. Laws That Permit, Laws That Prohibit
    • —
      • G10. Conservation Laws, Absolute And Partial
      • G11. Math As A Tool And A Toy
      • G12. The “System Of The World”: How The Heavens Drove Mechanics
      • G13. The Astromical World, Then And Now
      • G14. Superposition
      • G15. Physics At The End Of The Nineteenth Century: The Seeds Of Rel & QM
      • G16. The Submicroscopic Frontier: Reductionism
      • G17. Submicroscopic Chaos
      • G18. The Future Path Of Science
  • Supplemental
    • Rainbows: Figuring Their Angles
  • Index
Basic PhysicsBasic Physics
A Resource for Teachers by Ken Ford
  • Mechanics
    • —
      • M1. Vectors vs. Vector Quantities; Scalars vs. Scalar Quantities
      • M2. Significance of Newton’s First Law
      • M3. Newton’s Third Law: Its Formulation, Its Significance
      • M4. Momentum Conservation; Its Central Role
      • M5. Space Homogeneity And Momentum Conservation
      • M6. Inertial Mass
      • M7. Gravitational Mass
    • —
      • M8. Angular Momentum Characteristics
      • M9. Vanishing Of Total Internal Torque
      • M10. The Isotropy Of Space And Angular-Momentum Conservation
      • M11. Energy, A Central Concept
      • M12. Work And Its Relation To Kinetic And Potential Energy
      • M13. From Kepler’s Laws To Universal Gravitation
      • M14. Error And Uncertainty Distinguished
  • Thermodynamics
    • —
      • T1. What Is Thermodynamics
      • T2. Heat Vs. Internal Energy
      • T3. Equipartition And Degrees Of Freedom
      • T4. Frozen Degrees Of Freedom
      • T5. Six Versions Of The Second Law Of Thermodynamics
    • —
      • T6. Available And Unavailable Energy
      • T7. Entropy On Two Levels
      • T8. Subtleties Of Entropy
      • T9. The Arrow Of Time
  • Electricity & Magnetism
    • —
      • E1. Charge
      • E2. Early Links Between Electricity And Magnetism
      • E3. Monopoles, Not!
      • E4. The Q-ℰ-ℬ Triangle
    • —
      • E5. Inductance
      • E6. The Nature Of Light
      • E7. Why Light Travels At Speed C
      • E8. Notes On The History Of Electromagnetism
  • Relativity
    • —
      • R1. Agreement And Disagreement: Relativistic And Classical
      • R2. Transformations: Galilean And Lorentz
      • R3. “Michelson Airspeed Indicator”
      • R4. c = Constant Means Time Must Be Relative
      • R5. More Relativity And More Invariance
      • R6. E = mc2 As Einstein Derived It
    • —
      • R7. Momentum In Relativity, And Another Approach To E = mc2
      • R8. The Fourth Dimension: Spacetime And Momenergy
      • R9. Versions Of The Twin Paradox
      • R10. The Principle Of Equivalence
      • R11. Geometrodynamics
  • Quantum Physics
    • —
      • Q1. Five Key Ideas Of Quantum Mechanics
      • Q2. Granularity
      • Q3. Probability
      • Q4. Annihilation And Creation
      • Q5. Waves And Particles (The de Broglie Equation)
      • Q6. The Uncertainty Principle
      • Q7. Why Is The Hydrogen Atom As Big As It Is?
      • Q8. Localization Of Waves; Relation To Uncertainty Principle
    • —
      • Q9. Planck’s Quantum Not Yet A Photon
      • Q10. Planck’s Constant As The Particle-Wave Link
      • Q11. The Bohr Atom: Obsolete But Important
      • Q12. Bohr’s Key Atomic Postulates
      • Q13. Bohr’s Triumph: Explaining The Rydberg Constant
      • Q14. H-Atom Wave Functions And Classical Correspondence
      • Q15. The Jovian Task: Building The Atoms
      • Q16. Feynman Diagrams
  • Nuclear Physics
    • —
      • N1. Why Are There No Electrons In The Nucleus?
      • N2. The Line Of Nuclear Stability Bends And Ends
      • N3. The “Miracle” Of Nuclear Stability
      • N4. Pauli Letter Proposing What Came To Be Called The Neutrino
    • —
      • N5. Early History Of Radioactivity And Transmutation
      • N6. Bohr-Wheeler Theory Of Fission
      • N7. Sun’s Proton-Proton Cycle
  • General, Historical, Philosophical
    • —
      • G1. Faith In Simplicity As A Driver Of Science
      • G2. Science: Creation Vs. Discovery
      • G3. Is There A Scientific Method?
      • G4. What Is A Theory?
      • G5. The “Great Theories” Of Physics
      • G6. Natural Units, Dimensionless Physics
      • G7. Three Kinds Of Probability
      • G8. The Forces Of Nature
      • G9. Laws That Permit, Laws That Prohibit
    • —
      • G10. Conservation Laws, Absolute And Partial
      • G11. Math As A Tool And A Toy
      • G12. The “System Of The World”: How The Heavens Drove Mechanics
      • G13. The Astromical World, Then And Now
      • G14. Superposition
      • G15. Physics At The End Of The Nineteenth Century: The Seeds Of Rel & QM
      • G16. The Submicroscopic Frontier: Reductionism
      • G17. Submicroscopic Chaos
      • G18. The Future Path Of Science
  • Supplemental
    • Rainbows: Figuring Their Angles
  • Index

N1. Why Are There No Electrons In The Nucleus?

Based on Basic Physics Feature 154

Before the discovery of the neutron in 1932, if nuclei were to be described in terms of known particles at all, it had to be in terms of protons and electrons. No other building blocks were known. An alpha particle, for example, could be described as a closely bound structure of four protons and two electrons. The four protons contributed the necessary mass; the two electrons canceled the excess charge. Similarly, a nucleus of uranium 238 could be assumed to contain 238 protons and 146 electrons. Quantum mechanics raised two serious objections against this view of nuclear composition. First, to hold an electron within the confines of a nuclear volume requires an energy larger than is actually associated with nuclear binding. Let me explain this with an illustrative calculation. If, for instance, an electron is held within the “container” of a helium nucleus, its wave amplitude must undergo at least one half cycle of oscillation in a distance of about 0.5 × 10–14 m. This means that its wavelength can be at most 10–14 m. Then the de Broglie equation reveals its least possible momentum:

p = h/λ = 6.63 x 10–34 kg m2/s / 10–14 m = 6.63 x 10–20 kg m/s

At this point I must proceed with caution. Is this momentum in the domain of relativistic mechanics or of classical mechanics? If I guess it to be classical, I can calculate the speed of the electron to be:

vclassical = p/m = 6.63 x 10–20 kg m/s / 9.11 x 10–31 kg = 7.3 x 1010 m/s

I have guessed wrong. This speed is 240 times greater than the speed of light, a physical impossibility. Therefore I must turn to a relativistic equation. A helpful one will be the equation connecting energy and momentum:

E2 = p2c2 + m2c4 or E2 = (pc)2 + (mc2)2 .

The quantity mc2, the rest energy of the electron, is, in electron volt units, mc2 = 0.511 MeV.

The quantity pc can be calculated for this example:


pc = (6.63 ×10–20 kg m/sec) ×(3 ×108 m/sec) = 1.99 ×10–11 J = 124 MeV .

(I have used the conversion factor, 1.6 × 10–19 J/eV.) Since pc is so much greater than mc2 (which is a mere 0.511 MeV), the second term in the energy-momentum equation above contributes very little, and the energy-momentum relation becomes, approximately, E = pc. In round numbers, then, an electron held within a helium nucleus would have a kinetic energy in excess of 100 MeV. So energetic an electron should in fact fly out of the nucleus, since the total binding energy holding all the particles together in the helium nucleus is only 28 MeV, or 7 MeV per nucleon. This was one difficulty with the idea of electrons in the nucleus.

Another difficulty concerns nuclear spin. According to the proton-electron model of nuclear composition, a nucleus of 7N14 contains 21 particles: 14 protons and 7 electrons. According to the proton-neutron model, the same nucleus contains only 14 particles: 7 protons and 7 neutrons. Since all the particles in question have one-half unit of spin, it makes an important difference whether the nucleus contains an odd or an even number of particles. If the number is odd, the total nuclear spin must be equal to an integer plus one half (in units of ħ). If the number is even, the nuclear spin must be integral. Early evidence that the nitrogen nucleus has integral spin was evidence against electrons in the nucleus. Since then, the spins of hundreds of nuclei have been determined. All are consistent with Heisenberg’s theory of neutron-proton composition.


⇐ PREVIOUS ESSAY | NEXT ESSAY ⇒

Contact Us

Please type your brief message here.

Send Message

HOME | INDEX | ABOUT THE AUTHOR | CONTACT

© 2025 Kenneth W. Ford

  • Home
  • About the Author
  • Contact