• Mechanics
    • —
      • M1. Vectors vs. Vector Quantities; Scalars vs. Scalar Quantities
      • M2. Significance of Newton’s First Law
      • M3. Newton’s Third Law: Its Formulation, Its Significance
      • M4. Momentum Conservation; Its Central Role
      • M5. Space Homogeneity And Momentum Conservation
      • M6. Inertial Mass
      • M7. Gravitational Mass
    • —
      • M8. Angular Momentum Characteristics
      • M9. Vanishing Of Total Internal Torque
      • M10. The Isotropy Of Space And Angular-Momentum Conservation
      • M11. Energy, A Central Concept
      • M12. Work And Its Relation To Kinetic And Potential Energy
      • M13. From Kepler’s Laws To Universal Gravitation
      • M14. Error And Uncertainty Distinguished
  • Thermodynamics
    • —
      • T1. What Is Thermodynamics
      • T2. Heat Vs. Internal Energy
      • T3. Equipartition And Degrees Of Freedom
      • T4. Frozen Degrees Of Freedom
      • T5. Six Versions Of The Second Law Of Thermodynamics
    • —
      • T6. Available And Unavailable Energy
      • T7. Entropy On Two Levels
      • T8. Subtleties Of Entropy
      • T9. The Arrow Of Time
  • Electricity & Magnetism
    • —
      • E1. Charge
      • E2. Early Links Between Electricity And Magnetism
      • E3. Monopoles, Not!
      • E4. The Q-ℰ-ℬ Triangle
    • —
      • E5. Inductance
      • E6. The Nature Of Light
      • E7. Why Light Travels At Speed C
      • E8. Notes On The History Of Electromagnetism
  • Relativity
    • —
      • R1. Agreement And Disagreement: Relativistic And Classical
      • R2. Transformations: Galilean And Lorentz
      • R3. “Michelson Airspeed Indicator”
      • R4. c = Constant Means Time Must Be Relative
      • R5. More Relativity And More Invariance
      • R6. E = mc2 As Einstein Derived It
    • —
      • R7. Momentum In Relativity, And Another Approach To E = mc2
      • R8. The Fourth Dimension: Spacetime And Momenergy
      • R9. Versions Of The Twin Paradox
      • R10. The Principle Of Equivalence
      • R11. Geometrodynamics
  • Quantum Physics
    • —
      • Q1. Five Key Ideas Of Quantum Mechanics
      • Q2. Granularity
      • Q3. Probability
      • Q4. Annihilation And Creation
      • Q5. Waves And Particles (The de Broglie Equation)
      • Q6. The Uncertainty Principle
      • Q7. Why Is The Hydrogen Atom As Big As It Is?
      • Q8. Localization Of Waves; Relation To Uncertainty Principle
    • —
      • Q9. Planck’s Quantum Not Yet A Photon
      • Q10. Planck’s Constant As The Particle-Wave Link
      • Q11. The Bohr Atom: Obsolete But Important
      • Q12. Bohr’s Key Atomic Postulates
      • Q13. Bohr’s Triumph: Explaining The Rydberg Constant
      • Q14. H-Atom Wave Functions And Classical Correspondence
      • Q15. The Jovian Task: Building The Atoms
      • Q16. Feynman Diagrams
  • Nuclear Physics
    • —
      • N1. Why Are There No Electrons In The Nucleus?
      • N2. The Line Of Nuclear Stability Bends And Ends
      • N3. The “Miracle” Of Nuclear Stability
      • N4. Pauli Letter Proposing What Came To Be Called The Neutrino
    • —
      • N5. Early History Of Radioactivity And Transmutation
      • N6. Bohr-Wheeler Theory Of Fission
      • N7. Sun’s Proton-Proton Cycle
  • General, Historical, Philosophical
    • —
      • G1. Faith In Simplicity As A Driver Of Science
      • G2. Science: Creation Vs. Discovery
      • G3. Is There A Scientific Method?
      • G4. What Is A Theory?
      • G5. The “Great Theories” Of Physics
      • G6. Natural Units, Dimensionless Physics
      • G7. Three Kinds Of Probability
      • G8. The Forces Of Nature
      • G9. Laws That Permit, Laws That Prohibit
    • —
      • G10. Conservation Laws, Absolute And Partial
      • G11. Math As A Tool And A Toy
      • G12. The “System Of The World”: How The Heavens Drove Mechanics
      • G13. The Astromical World, Then And Now
      • G14. Superposition
      • G15. Physics At The End Of The Nineteenth Century: The Seeds Of Rel & QM
      • G16. The Submicroscopic Frontier: Reductionism
      • G17. Submicroscopic Chaos
      • G18. The Future Path Of Science
  • Supplemental
    • Rainbows: Figuring Their Angles
  • Index
Basic PhysicsBasic Physics
A Resource for Teachers by Ken Ford
  • Mechanics
    • —
      • M1. Vectors vs. Vector Quantities; Scalars vs. Scalar Quantities
      • M2. Significance of Newton’s First Law
      • M3. Newton’s Third Law: Its Formulation, Its Significance
      • M4. Momentum Conservation; Its Central Role
      • M5. Space Homogeneity And Momentum Conservation
      • M6. Inertial Mass
      • M7. Gravitational Mass
    • —
      • M8. Angular Momentum Characteristics
      • M9. Vanishing Of Total Internal Torque
      • M10. The Isotropy Of Space And Angular-Momentum Conservation
      • M11. Energy, A Central Concept
      • M12. Work And Its Relation To Kinetic And Potential Energy
      • M13. From Kepler’s Laws To Universal Gravitation
      • M14. Error And Uncertainty Distinguished
  • Thermodynamics
    • —
      • T1. What Is Thermodynamics
      • T2. Heat Vs. Internal Energy
      • T3. Equipartition And Degrees Of Freedom
      • T4. Frozen Degrees Of Freedom
      • T5. Six Versions Of The Second Law Of Thermodynamics
    • —
      • T6. Available And Unavailable Energy
      • T7. Entropy On Two Levels
      • T8. Subtleties Of Entropy
      • T9. The Arrow Of Time
  • Electricity & Magnetism
    • —
      • E1. Charge
      • E2. Early Links Between Electricity And Magnetism
      • E3. Monopoles, Not!
      • E4. The Q-ℰ-ℬ Triangle
    • —
      • E5. Inductance
      • E6. The Nature Of Light
      • E7. Why Light Travels At Speed C
      • E8. Notes On The History Of Electromagnetism
  • Relativity
    • —
      • R1. Agreement And Disagreement: Relativistic And Classical
      • R2. Transformations: Galilean And Lorentz
      • R3. “Michelson Airspeed Indicator”
      • R4. c = Constant Means Time Must Be Relative
      • R5. More Relativity And More Invariance
      • R6. E = mc2 As Einstein Derived It
    • —
      • R7. Momentum In Relativity, And Another Approach To E = mc2
      • R8. The Fourth Dimension: Spacetime And Momenergy
      • R9. Versions Of The Twin Paradox
      • R10. The Principle Of Equivalence
      • R11. Geometrodynamics
  • Quantum Physics
    • —
      • Q1. Five Key Ideas Of Quantum Mechanics
      • Q2. Granularity
      • Q3. Probability
      • Q4. Annihilation And Creation
      • Q5. Waves And Particles (The de Broglie Equation)
      • Q6. The Uncertainty Principle
      • Q7. Why Is The Hydrogen Atom As Big As It Is?
      • Q8. Localization Of Waves; Relation To Uncertainty Principle
    • —
      • Q9. Planck’s Quantum Not Yet A Photon
      • Q10. Planck’s Constant As The Particle-Wave Link
      • Q11. The Bohr Atom: Obsolete But Important
      • Q12. Bohr’s Key Atomic Postulates
      • Q13. Bohr’s Triumph: Explaining The Rydberg Constant
      • Q14. H-Atom Wave Functions And Classical Correspondence
      • Q15. The Jovian Task: Building The Atoms
      • Q16. Feynman Diagrams
  • Nuclear Physics
    • —
      • N1. Why Are There No Electrons In The Nucleus?
      • N2. The Line Of Nuclear Stability Bends And Ends
      • N3. The “Miracle” Of Nuclear Stability
      • N4. Pauli Letter Proposing What Came To Be Called The Neutrino
    • —
      • N5. Early History Of Radioactivity And Transmutation
      • N6. Bohr-Wheeler Theory Of Fission
      • N7. Sun’s Proton-Proton Cycle
  • General, Historical, Philosophical
    • —
      • G1. Faith In Simplicity As A Driver Of Science
      • G2. Science: Creation Vs. Discovery
      • G3. Is There A Scientific Method?
      • G4. What Is A Theory?
      • G5. The “Great Theories” Of Physics
      • G6. Natural Units, Dimensionless Physics
      • G7. Three Kinds Of Probability
      • G8. The Forces Of Nature
      • G9. Laws That Permit, Laws That Prohibit
    • —
      • G10. Conservation Laws, Absolute And Partial
      • G11. Math As A Tool And A Toy
      • G12. The “System Of The World”: How The Heavens Drove Mechanics
      • G13. The Astromical World, Then And Now
      • G14. Superposition
      • G15. Physics At The End Of The Nineteenth Century: The Seeds Of Rel & QM
      • G16. The Submicroscopic Frontier: Reductionism
      • G17. Submicroscopic Chaos
      • G18. The Future Path Of Science
  • Supplemental
    • Rainbows: Figuring Their Angles
  • Index

N4. Pauli Letter Proposing What Came To Be Called The Neutrino

Based on Basic Physics Feature 160

By the late 1920s, physicists had been conditioned by the successes of relativity and quantum mechanics to expect the unexpected. Some were willing to abandon the law of energy conservation in the nuclear domain. Wolfgang Pauli in 1930 made a different suggestion that was at once conservative and bold. In order to “save” the law of energy conservation, he postulated an entirely new particle, uncharged and until then unseen, which might exist within nuclei and be emitted along with an electron in beta decay. The letter in which he made this suggestion is a document of considerable interest. It reveals much about the approach of a creative twentieth-century physicist to problems of nature. Pauli’s letter1 is as follows.

Open letter to the radioactive group at the regional meeting in Tübingen.

Physical Institute of the Eidgenossischen Zürich

Technischen Hochschule December 4, 1930

Zürich Gloria St.

Dear Radioactive Ladies and Gentlemen:

I beg you to receive graciously the bearer of this letter who will report to you in detail how I have hit on a desperate way to escape from the problems of the “wrong” statistics of the N and Li6 nuclei and of the continuous beta spectrum in order to save the “even-odd” rule of statistics and the law of energy conservation. Namely the possibility that electrically neutral particles, which I would like to call neutrons, might exist inside nuclei; these would have spin ½, would obey the exclusion principle, and would in addition differ from photons through the fact that they would not travel at the speed of light. The mass of the neutron ought to be about the same order of magnitude as the electron mass, and in any case could not be greater than 0.01 proton masses. The continuous beta spectrum would then become understandable by assuming that in beta decay a neutron is always emitted along with the electron, in such a way that the sum of the energies of the neutron and electron is a constant.

Now, the question is, what forces act on the neutron? The most likely model for the neutron seems to me, on wave mechanical grounds, to be the assumption that the motionless neutron is a magnetic dipole with a certain magnetic moment μ (the bearer of this letter can supply details). The experiments demand that the ionizing power of such a neutron cannot exceed that of a gamma ray, and therefore μ probably cannot be greater than e(10–13 cm).

At the moment I do not dare to publish anything about this idea, so
I first turn trustingly to you, dear radioactive friends, with the question: how could such a neutron be experimentally identified if it possessed about the same penetrating power as a gamma ray or perhaps 10 times greater penetrating power?

I admit that my way out might look rather improbable at first since if the neutron existed it should have been seen long ago. But nothing ventured, nothing gained. The gravity of the situation with the continuous beta spectrum was illuminated by a remark of my distinguished predecessor in office, Mr. Debye, who recently said to me in Brussels, “Oh, that’s a problem like the new taxes; one had best not think about it at all.” So one ought to discuss seriously any way that may lead to salvation. Well, dear radioactive friends, weigh it and pass sentence! Unfortunately, I cannot appear personally in Tübingen, for I cannot get away from Zürich on account of a ball which is held here on the night of December 6-7. With best regards to you and to Mr. Baek,

Your most obedient servant, W. Pauli

Despite his smokescreen of banter, Pauli undoubtedly meant this letter to be taken seriously. With unerring instinct, he pinpointed two of the most important puzzles of nuclear physics at the time—the apparent nonconservation of energy in beta decay and the seemingly wrong spin of certain nuclei—and pointed out that a new lightweight neutral particle might resolve both puzzles. At the same time, he recognized the speculative nature of his suggestion, and chose this informal method of publicizing it.

It was just two years later, in 1932, that an actual neutron (not Pauli’s hypothesized particle) was discovered. Two years after that, in 1934, Enrico Fermi named Pauli’s particle the neutrino (little neutron) and developed a theory for its creation and destruction that formed the basis for all subsequent theories of fundamental particles. Not until 1956 did Frederick Reines and Clyde Cowan detect the neutrino for the first time (although by then no one doubted its existence). Pauli was right: Observing the particle was not easy. For many years the neutrino was assumed to be, like the photon and graviton, massless. By 2000, physicists were seeing evidence that it might have mass, albeit much less than the mass of an electron. Now we know that there are (at least) three kinds of neutrinos (or three “flavors”) with masses still not measured but believed to be less than one millionth the mass of an electron (and definitely not zero).


1 Permission to reprint in the 1968 edition of Basic Physics courtesy of Mrs. Franca Pauli. (Translated from the German.)


⇐ PREVIOUS ESSAY | NEXT ESSAY ⇒

Contact Us

Please type your brief message here.

Send Message

HOME | INDEX | ABOUT THE AUTHOR | CONTACT

© 2025 Kenneth W. Ford

  • Home
  • About the Author
  • Contact